

Technical Data Sheet TDS-296-02968

High Strength Injection Epoxy Adhesive

TECHNICAL DATA

Property	Test	Result*								
	Method									
Consistency	ASTM	Passed, Non-sag								
	C881									
Glass	ASTM	155°F								
transition	E1356									
temperature										
Heat	ASTM	136°F (58°C)								
deflection	D648									
temperature										
Bond	ASTM	2,916 psi (2 d)								
strength	C882	3,366 psi (14 d)								
(moist cure)										
Water	ASTM	0.10%								
absorption	D570									
Compressive	ASTM	14,110 psi								
yield	D695									
strength										
Compressive	ASTM	612,970 psi (7 d)								
modulus	D695									
Shore D	ASTM	84								
Durometer	D2240									
Gel time	ASTM	60 min								
	C881									
VOC	ASTM	3 g/L								
	D2369									

*Material and curing conditions: 73 ± 2°F, unless otherwise noted.

CURE SCHEDULE

Base Ma Tempera		Gel Time	Cure Time
°F	°C	Min	hr
50	10	75	72
60	16	60	48
70	21	45	24
90	32	35	24
110	43	20	24

Note: For water-saturated concrete (including damp and water-filled holes), the cure times must be doubled.

PRODUCT DESCRIPTION

The CTech-LLC[®] IEA[™]HS is a high-strength epoxy-based adhesive formulated for anchoring and doweling in cracked and uncracked concrete and masonry base materials.

Applied in one single action the two component IEA[™]HS injection adhesive will produce a cost effective, strong and chemical resistant fixing.

ADVANTAGES

- 1:1 two-component, high-solids, epoxy-based anchoring adhesive formula
- Passed the demanding ICC-ES AC308 adverse-condition tests pertaining to elevated temperatures and long-term sustained loads.
- Code listed under the IBC/IRC for cracked and uncracked concrete per ICC-ES ESR-2508
- Code listed under the IBC/IRC for masonry per IAPMO UES ER-265.
- Suitable for use under static and seismic loading conditions in cracked and uncracked concrete and masonry.
- Cure times: 24 hours at 70°F (21°C), 72 hours at 50°F (10°C)
- Easy hole-cleaning no power-brushing required
- Suitable for use in dry or water-saturated concrete

TYPICAL USES

- Threaded rod anchoring and rebar doweling into concrete, masonry and URM (red brick)
- Recognized per AC308 to be used for rebar development and splice length design provisions of ACI 318.
- Suitable for horizontal, vertical and overhead applications

Codes

RR25965 (masonry); Florida FL15730.5; AASHTO M-235 and ASTM C881 (Type I and IV, Grade 3, Class C).

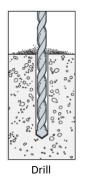
Test Criteria

Anchors installed with IEA[™]HS adhesive have been tested in accordance with ICC-ES. Acceptance Criteria for Post-Installed Adhesive Anchors in Masonry Elements (AC58) and Adhesive Anchors in Concrete Elements (AC308).

INSTALLATION PROCEDURE

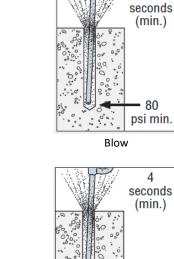
HOLE PREPARATION

- Drill: Drill hole to specified diameter and depth.
- Blow: Remove dust from hole with oil-free compressed air for a minimum of four seconds. Compressed air nozzle must reach the bottom of the hole.
- Brush: Clean with a nylon brush for a minimum of four cycles. Brush should provide resistance to insertion. If no resistance is felt, the brush is worn and must be replaced.
- Blow: Remove dust from hole with oil-free compressed air for a minimum of four seconds. Compressed air nozzle must reach the bottom of the hole.


4

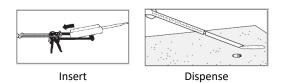
80

4


80 psi min.

Blow

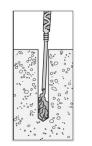
4 cycles

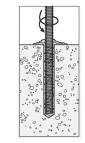

(min.)

Brush

Cartridge Preparation

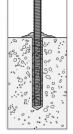
- Insert: Insert cartridge into dispensing tool.
- Dispense: Dispense adhesive to the side until properly mixed (uniform color).


FILLING THE HOLE


FOR SOLID BASE MATERIALS

Fill: Fill hole completely full, starting from bottom of hole to prevent water pockets. Withdraw nozzle as hole fills up.

Insert: Insert clean, oil-free anchor, turning slowly until the anchor


contacts the bottom of the hole. Do not disturb: Do not disturb anchor until fully cured.

Fill

Insert

Do not disturb

Form No. 296-02968 Page 2 of 8 | IEA[™]HS Technical Data Sheet (TDS)

CTTEC'S Composite Technology LLC

IEA[™]HS Design Information

IEA[™]HS Installation Information and Additional Data for Threaded Rod and Rebar in Normal-Weight Concrete¹

			Nominal Anchor Diameter (in.) / Rebar Size								
Characteristic	Symbol	Units	3/8 / #3	1/2 / #4	5/8 / #5	3/4 / #6	7/8 / #7	1/#8	11/4 / #10		
			Insta	llation Informa	ation						
Drill Bit Diameter	d _{hole}	in.	1/2	5/8	3/4	7/8	1	11/8	13/8		
Maximum Tightening Torq	he	T _{inst}			20	30	45	60	80	125	
Dormittad Embadment Donth Dongo	Minimum	h _{ef}	in.	23/8	2 3/4	31/8	31/2	3 3/4	4	5	
Permitted Embedment Depth Range	Maximum	h _{ef}	in.	71/2	10	121/2	15	171/2	20	25	
Minimum Concrete Thickness		h _{min}	in.	h _{ef} +5d _{hole}							
Critical Edge Distance ²		Cac	in.	See footnote 2							
Minimum Edge Distance		C _{min}	in.		13/4						
Minimum Anchor Spacing		\$ _{min}	in.	3							
1. The information presented in this tak 2. $c_{ac} = hef(t_{k,uncr}/1,160)^{a_{a}} \times [3.1 - 0.7(h_{j}/h_{fef}] \le 2.4$ $t_{k,uncr} = the characteristic bond strength h = the member thickness (inches)$	hef)], where:	ŗ		-							

hef = the embedment depth (inches)

Characteristic		Gunthal	Unite	Nominal Anchor Diameter (in.)							
	Characteristic		Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	11/4
		Steel S	Strength in T	ension							
	Minimum Tensile Stress Area		A _{se}	in²	0.078	0.142	0.226	0.334	0.462	0.606	0.969
Threaded Rod	Tension Resistance of Steel — ASTM F1554, Grade 36				4,525	8,235	13,110	19,370	26,795	35,150	56,200
	Tension Resistance of Steel — ASTM A193, Grade B7				9,750	17,750	28,250	41,750	57,750	75,750	121,125
	Tension Resistance of Steel — Type 410 Stainless (AS A193, Grade B6)	STM	N _{sa}	lb.	8,580	15,620	24,860	36,740	50,820	66,660	106,590
	Tension Resistance of Steel — Type 304 and 316 Sta A193, Grade B8 and B8M)	inless (ASTM			4,445	8,095	12,880	19,040	26,335	34,540	55,235
	Strength Reduction Factor — Steel Failure		?	_				0.75 ⁷			
	Concrete Breakc	out Strength in Ten	sion (2,500 p	si≤f'c≤	≤ 8,000 psi)12					
Effectiveness Fac	tor — Uncracked Concrete		k _{uncr}	_				24			
Effectiveness Fac	ctor — Cracked Concrete		k _{cr}	_				17			
Strength Reduction Factor — Breakout Failure				_				0.65 ⁹			
	Bor	nd Strength in Tens	ion (2,500 p	si≤f'c≤	8,000 psi)	12					
	Characteristic Bond Strength ^{5,13}		₽ _{k,uncr}	psi	770	1,150	1,060	970	885	790	620
Uncracked Concrete ^{2,3,4}	Permitted Embedment Depth Range	Minimum			2 3/8	2 3/4	31/8	31/2	3 3/4	4	5
Concrete ^{2,3,4}		Maximum	h _{ef}	in.	71/2	10	121/2	15	171/2	20	25
	Characteristic Bond Strength ^{5,10,11,13}		₿ _{k,cr}	psi	595	510	435	385	355	345	345
Cracked Concrete ^{2,3,4}		Minimum			3	4	5	6	7	8	10
concrete	Permitted Embedment Depth Range	Maximum	h _{ef}	in.	71/2	10	121/2	15	171/2	20	25
	Bond Strength in Tension — Bor	nd Strength Reduct	ion Factors	for Cont	inuous Spe	cial Inspect	tion				
Strength Reduct	ion Factor — Dry Concrete		₽ dry, ci	_				0.65 ⁸			
Strength Reduct	ion Factor — Water-Saturated Concrete — $h_{ef} \le 12d_a$		₽ _{sat,ci}	_	0.55 ⁸ 0.45 ⁸						
Additional Facto	r for Water-Saturated Concrete — $h_{ef} \leq 12d_a$		K _{sat,ci} 6	_	N/A 1 0.84				.84		
Strength Reduct	ion Factor — Water-Saturated Concrete — $h_{ef} > 12d_a$		₽ _{sat,ci}	_	0.458						
Additional Facto	r for Water-Saturated Concrete — h _{ef} > 12d _a		k _{sat,ci} ₅	_				0.57			
	Bond Strength in Tension — B	ond Strength Redu	ction Factor	s for Per	riodic Spec	ial Inspection	on				
Strength Reduct	ion Factor — Dry Concrete		₽ _{dry,pi}	_				0.55 ⁸			
Strength Reduct	ion Factor — Water-Saturated Concrete — $h_{ef} \le 12d_a$			_				0.45 ⁸			
Additional Facto	r for Water-Saturated Concrete — $h_{ef} \leq 12d_a$		K _{sat,pi} 6	_		1		0.93		0	.71
Strength Reduct	ion Factor — Water-Saturated Concrete — $h_{ef} > 12d_a$		■sat, pi	_			1	0.45 ⁸		1	
Additional Facto	r for Water-Saturated Concrete — h _{ef} > 12d _a		K _{sat,pi} 6	_				0.48			

IEA™HS Tension Strength Design Data for Threaded Rod in Normal-Weight Concrete¹

2. Temperature Range: Maximum short-term temperature of 150°F. Maximum long-term temperature of 110°F.

Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).

4. Long-term concrete temperatures are constant temperatures over a significant time period.

5. For anchors that only resist wind or seismic loads, bond strengths may be increased by 72%.

6. In water-saturated concrete, multiply $\mathbb{D}_{k,uncr}$ and $\mathbb{D}_{k,cr}$ by K_{sat}.

7. The value of 🖓 applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of 🖗.

8. The value of 🖅 applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.4 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of [2].

9. The value of 🖅 applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.4 (c) for Condition B are met. If the load combinations of ACI 318-11 Section 9.2 are used and the requirements of ACI 318-11 D.4.4 (c) for Condition A are met, refer to ACI 318-11 D.4.4 (c) to determine the appropriate value of 🖄. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.5 to determine the appropriate value of 🖄.

10. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 7/8" anchors must be multiplied by 🛮 M.sets = 0.80.

12. The values of f_c used for calculation purposes must not exceed 8,000 psi (55.1 MPa) for uncracked concrete. The value of f_c used for calculation purposes must not exceed 2,500 psi (17.2 MPa) for tension resistance in cracked concrete.

13. For applications where maximum short-term temperature is 110°F (43°C) and the maximum long-term temperature is 75°F (24°C), bond strengths may be increased 93%. No additional increase is permitted for anchors that only resist wind or seismic loads.

IEA[™]HS Tension Strength Design Data for Rebar in Normal-Weight Concrete¹

Characteristic			Symbol	Symbol Units		Rebar Size							
					#3	#4	#5	#6	#7	#8	#10		
	1		Steel Strength i	in Tension	1	1	1	1	1	1	1		
	Minimum Tensile Stress Area		A _{se}	in ²	0.11	0.2	0.31	0.44	0.6	0.79	1.23		
Rebar	Tension Resistance of Steel — Reba (ASTM A615 Grade 60)	r	N _{sa}	lb.	9,900	18,000	27,900	39,600	54,000	71,100	110,700		
	2	-				0.657							
	Concrete Brea	akout Strengt	h in Tension (2,5	500 psi ≤ f'c	≤ 8,000 psi)10							
Effectiveness Factor — Uncrack	ed Concrete		k _{uncr}	_				24					
Effectiveness Factor — Cracked	Concrete		k _{cr}	_				17					
Strength Reduction Factor — B	reakout Failure		2	_				0.65 ⁹					
	Bo	ond Strength i	n Tension (2,500	$0 \text{ psi} \leq f'_c \leq 8$	8,000 psi)10								
	Characteristic Bond Strength ^{5,11}		■k,uncr	psi	895	870	845	820	795	770	720		
Uncracked Concrete 2,3,4	Permitted Embedment				23/8	23/4	31/8	31/2	33/4	4	5		
	Depth Range	Maximum	h _{ef}	in.	71/2	10	121/2	15	171/2	20	25		
	Characteristic Bond Strength ^{5,11}	1	₽ _{k,cr}	psi	365	735	660	590	515	440	275		
Cracked Concrete 2,3,4	Permitted Embedment	Minimum			3	4	5	6	7	8	10		
	Depth Range	Maximum		in.	71/2	10	121/2	15	171/2	20	25		
	Bond Strength in Tension — I	Bond Strength	n Reduction Fact	tors for Con	tinuous Spe	cial Inspec	tion				1		
Strength Reduction Factor — D	ry Concrete		 ℤdry,ci	_				0.65 ⁸					
Strength Reduction Factor — W	/ater-Saturated Concrete – $h_{ef} ≤ 12d_a$		■sat,ci	_	0.55 ⁸ 0.45 ⁸								
Additional Factor for Water-Sat	urated Concrete – $h_{ef} \le 12d_a$		K _{sat,ci} 6	_	N	N/A 1 0.84					.84		
Strength Reduction Factor — W	/ater-Saturated Concrete – h _{ef} > 12d _a		■sat,ci	_	0.45 ⁸								
Additional Factor for Water-Sate	urated Concrete – h _{ef} > 12d _a		K _{sat,ci} 6	_				0.57					
	Bond Strength in Tension —	- Bond Streng	th Reduction Fa	ictors for Pe	riodic Spec	ial Inspecti	on						
Strength Reduction Factor — D	ry Concrete		₽ dry,pi	_				0.55 ⁸					
Strength Reduction Factor — W	/ater-Saturated Concrete – h_{ef} ≤ 12 d_a		■sat,pi	_				0.45 ⁸					
Additional Factor for Water-Sate	urated Concrete – $h_{ef} \le 12d_a$		K _{sat,pi} 6	_		1		0.93		0.	.71		
Strength Reduction Factor — W	/ater-Saturated Concrete – h _{ef} > 12d _a		■sat,pi	_				0.45 ⁸					
Additional Factor for Water-Sate	urated Concrete – h _{ef} > 12d _a		K _{sat, pi} ⁶	_				0.48					
Temperature Range: Maxim Short-term concrete temper Long-term concrete temper For anchors that only resist In water-saturated concrete The value of 22 applies whe 318-11 D.4.4 to determine The value of 22 applies whe	in this table is to be used in conjunc num short-term temperature of 15C ratures are those that occur over s1 ratures are constant temperatures of wind or seismic loads, bond streng e, multiply $\mathbb{D}_{k,uncr}$ and $\mathbb{D}_{k,cr}$ by <i>Ksat</i> . In the load combinations of ACI 318 the appropriate value of \mathbb{D} . In both the load combinations of ACI 318 If the load combinations of ACI 318	9°F. Maximum hort intervals over a signific ths may be in 1-14 5.3 or AC Cl 318-14 5.3	I long-term tem (diurnal cycling cant time perioc creased by 72% I 318-11 Section or ACI 318-11 S	perature of ;). I. 5. n 9.2 are us	ed. If the lo	bad combir d the requ	irements o	of ACI 318-					

9. The value of 22 applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.4 (c) for Condition B are met. If the load combinations of ACI 318-11 Section 9.2 are used and the requirements of ACI 318-11 D.4.4 (c) for Condition A are met, refer to ACI 318-11 D.4.4 to determine the appropriate value of 2. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.5 to determine the appropriate value of 2.
 10. The values of *f*_c used for calculation purposes must not exceed 8,000 psi (55.1 MPa) for uncracked concrete. The value of *f*_c used for calculation purposes must not exceed 2,500 psi (17.2 MPa) for tension resistance in cracked concrete.

1. For applications where maximum short-term temperature is 110°F (43°C) and the maximum long-term temperature is 75°F (24°C), bond strengths may be increased 93%. No additional increase is permitted for anchors that only resist wind or seismic loads.

				Nominal Anchor Diameter (in.)							
	Characteristic	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	11/4	
		Steel Streng	th in Shea	r	1				1	1	
	Minimum Shear Stress Area	A _{se}	in.2	0.078	0.142	0.226	0.334	0.462	0.606	0.969	
	Shear Resistance of Steel — ASTM F1554, Grade 36			2,260	4,940	7,865	11,625	16,080	21,090	33,720	
	Shear Resistance of Steel — ASTM A193, Grade B7			4,875	10,650	16,950	25,050	34,650	45,450	72,675	
	Shear Resistance of Steel — Type 410 Stainless (ASTM A193, Grade B6)	V _{sa}	lb.	4,290	9,370	14,910	22,040	30,490	40,000	63,955	
Threaded Rod	Shear Resistance of Steel — Type 304 and 316 Stainless (ASTM A193, Grade B8 & B8M)			2,225	4,855	7,730	11,420	15,800	20,725	33,140	
Rod	Reduction for Seismic Shear — ASTM F1554, Grade 36		_	0.87	0.78	0.68				0.65	
	Reduction for Seismic Shear — ASTM A193, Grade B7			0.87	0.78	0.68				0.65	
	Reduction for Seismic Shear — Stainless (ASTM A193, Grade B6)	₽ _{V,seis} 5		0.69	0.82	0.75 0.83				0.72	
	Reduction for Seismic Shear — Stainless (ASTM A193, Grade B8 & B8M)			0.69	0.82	0.75 0			0.83	0.72	
	Strength Reduction Factor — Steel Failure	2	_				0.65 ²		1		
	Concre	te Breakout	Strength	in Shear							
Outside Di	iameter of Anchor	do	in.	0.375	0.5	0.625	0.75	0.875	1	1.25	
Load Bear	ing Length of Anchor in Shear	e	in.	h _{ef}					1		
Strength F	Reduction Factor — Breakout Failure	2	_	0.703							
		Concrete	Pry-out St	rength in S	hear						
Coefficien	t for Pryout Strength	k _{cp}	_		1.0) for h _{ef} < 2.	50"; 2.0 for	h _{ef} ≥ 2.50"			
Strength F	Reduction Factor — Pryout Failure	2	_	0.704							
1. The infor	mation presented in this table is to be used in conjunction with the de	esign criteria	a of ACI 3	18-14 and <i>i</i>	ACI 318-11.						
2. The value	e of Papplies when the load combinations of ACI 318-14 5.3 or ACI 3	L8-11 Sectio	n 9.2 are	used. If the	e load comb	inations of	ACI 318 Ap	pendix C ar	e used, refe	er to ACI	
	.4.4 to determine the appropriate value of \mathbb{P} .										
for Condi	e of ILapplies when both the load combinations of ACI 318-14 5.3 or , ition B are met. If the load combinations of ACI 318-14 5.3 or ACI 318 n A are met, refer to ACI 318-11 D.4.3 to determine the appropriate v	11 Section	9.2 are us	ed and the	e requireme	nts of ACI 3	818-14 17.3	.3 or ACI 31	.8-11 D.4.3	(c) for	
	he the appropriate value of \mathbb{Z} .										
							-				

IEA[™]HS Shear Strength Design Data for Threaded Rod in Normal-Weight Concrete¹

4. The value of 🕮 applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 5.3 or ACI 318-11 D.4.3 (c) for

Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of 🗵. 5. The values of V₅₀ are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V₅₀ must be multiplied by $\mathbb{D}_{\textit{V},\textit{seis}}$ for the corresponding anchor steel type.

	Characteristic	Symbol	Units	Rebar Size							
				#3	#4	#5	#6	#7	#8	#10	
		SteelStre	ngthinShe	ar	1	1	I	I	I	1	
	Minimum Shear StressArea	A _{se}	in²	0.11	0.2	0.31	0.44	0.6	0.79	1.23	
Dahar	Shear Resistance of Steel — Rebar (ASTM A615 Grade 60)	V _{sa}	lb.	4,950	10,800	16,740	23,760	32,400	42,660	66,420	
Rebar	Reduction for Seismic Shear — Rebar (ASTM A615 Grade 60)	₽ _{V,seis} ⁵	_	0.85	0.88	0.84		0.77		0.59	
	Strength Reduction Factor — Steel Failure	2	_	0.60 ²							
	(Concrete Breakou	t Strength ir	n Shear							
Outside	e Diameter of Anchor	do	in.	0.375	0.5	0.625	0.75	0.875	1	1.25	
Load-B	earing Length of Anchor inShear	le	in.				h _{ef}				
Strengt	h Reduction Factor — Breakout Failure	?	_				0.70 ³				
		Concrete Pryout	Strength in	Shear							
Coeffic	ient for Pryout Strength	k _{cp}	_		1.0	Dfor <i>h_{ef}</i> <2.	50";2.0for	h _{ef} ≥2.50"			
Strength Reduction Factor — Pryout Failure Image: Constraint of the strength of the st											

IEA[™]HS Shear Strength Design Data for Rebar in Normal-Weight Concrete¹

2. The value of 🕮 applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of .

3. The value of 22 applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition A are met, refer to ACI 318-11 D.4.3 to determine the appropriate value of 2. If the load combinations of ACI 318-11 D.4.4 to determine the appropriate value of 2. If the load combinations of ACI 318-11 D.4.4 to

 The value of 22 applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 5.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of 2.
 The values of V₅₀ are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V₅₀ must be

5. The values of V_{so} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{so} must be multiplied by B_{V,seis}.

IEA[™]HS Development Length for Rebar Dowels in Normal-Weight Concrete

			Dev	elopment Length, in. (r	nm)		
Rebar Size	Drill Bit Diameter (in.)	ClearCover in. (mm)	f' _c =2,500psi (17.2MPa) Concrete	f' _c =3,000psi (20.7 MPa) Concrete	f' _c =4,000psi (27.6 MPa) Concrete	f' _c =6,000psi (41.4 MPa) Concrete	f' _c =8,000psi (55.2 MPa) Concrete
#3	1/2	1 1/2	12	12	12	12	12
(9.5)		(38)	(305)	(305)	(305)	(305)	(305)
#4	5/8	1 1/2	14.4	14	12	12	12
(12.7)		(38)	(366)	(356)	(305)	(305)	(305)
#5	3/4	1 1/2	18	17	14.2	12	12
(15.9)		(38)	(457)	(432)	(361)	(305)	(305)
#6	7/8	1 1/2	21.6	20	17.1	14	13
(19.1)		(38)	(549)	(508)	(434)	(356)	(330)
#7	1	3	31.5	29	25	21	18
(22.2)		(76)	(800)	(737)	(635)	(533)	(457)
#8	11/8	3	36	33	28.5	24	21
(25.4)		(76)	(914)	(838)	(724)	(610)	(533)
#9	13/8	3	40.5	38	32	27	23
(28.7)		(76)	(1,029)	(965)	(813)	(686)	(584)
#10	13/8	3	45	42	35.6	30	26
(32.3)		(76)	(1,143)	(1,067)	(904)	(762)	(660)
#11	13/4	3	51	47	41	33	29
(35.8)		(76)	(1,295)	(1,194)	(1,041)	(838)	(737)

 Taulated development lengths are for static, wind and seismic load cases in Seismic Design Category A and B. Development lengths in SDC C through F must comply with ACI 318-14 Chapter 18 or ACI 318-11 Chapter 12, as applicable. The value of f¹c used to calculate development lengths shall not exceed 2,500 psi in SDC C through F.

2. Rebar is assumed to be ASTM A615 Grade 60 or A706 (fy = 60,000 psi). For rebar with a higher yield strength, multiply tabulated values by fy / 60,000 psi.

3. Concrete is assumed to be normal-weight concrete. For lightweight concrete, multiply tabulated values by 1.33.

4. Tabulated values assume bottom cover of less than 12" cast below rebars ($\mathbb{P}_t = 1.0$).

5. Uncoated rebar must be used.

The value of K_{tr} is assumed to be 0. Refer to ACI 318 Section 12.2.3.

CTech-LLC®

CYTEC's Composite Technology technical@ctech-llc.com info@ctech-llc.com www.CTech-LLC.com Before using any CTech-LLC® product, the user must review the most recent version of the product's technical data sheet, material safety data sheet and other applicable documents, available at www.ctech-llc.com.

WARANTY:

IMPORTANT NOTE:

CTech-LLC® warrants its products to be free from manufacturing defects. Buyer determines suitability of product for use and assumes all risks. Buyer's sole remedy shall be limited to replacement of product. Any claim for breach of this warranty must be brought within one month of the 'date of purchase. CTech-LLC® shall not be liable for any consequential or special damages of any kind, resulting from any claim or breach of warranty, breach of contract, negligence or any legal theory. The Buyer, by accepting the products described herein, agrees to be responsible for thoroughly testing any application to determine its suitability before utilizing.

Form No. 296-02968

Page 8 of 8 | IEA[™]HS

Technical Data Sheet (TDS)