

Technical Data Sheet TDS-296-01086

IAATMHS

High Strength Injection Acrylic Adhesive

Building & ransportation

Oil, Gas & Industrial

Offshore & Onshore

Water & Wastewater

PRODUCT DESCRIPTION

Formulated for high-strength anchorage of threaded rod and rebar into cracked and uncracked concrete and masonry under a wide range of conditions, CTech-LLC® IAA $^{\mathsf{TM}}$ HS acrylic-based chemical anchor dispenses easily in cold or warm environments and in below-freezing temperatures with no need to warm the cartridge.

ADVANTAGES

- 10:1 two-component, acrylic-based anchoring adhesive.
- Passed the demanding ICC-ES AC308 adverse-condition tests pertaining to reduced and elevated temperatures and long-term sustained loads.
- Code listed under the IBC/IRC for cracked and uncracked concrete per IAPMO UES ER-263 and City of L.A. RR25960
- Code listed under the IBC/IRC for masonry per IAPMO UES ER-281 and City of L.A. RR25966
- Suitable for use under static and seismic loading conditions in cracked and uncracked concrete as well as masonry
- Easy hole-cleaning procedure no power-brushing required
- Suitable for use in dry or water-saturated concrete
- Cures in substrate temperatures as low as 14°F (-10°C) in 24 hours or less

TYPICAL USES

- Threaded rod anchoring and rebar doweling into concrete, masonry.
- Suitable for horizontal, vertical and overhead applications.

CODES

IAPMO UES ER-263 (concrete); IAPMO UES ER-281 (masonry).

TEST CRITERIA

Anchors installed with IAA $^{\mathsf{TM}}$ HS adhesive have been tested in accordance with ICC-ES.

Acceptance Criteria for Post-Installed Adhesive Anchors in Masonry Elements (AC58) and Adhesive Anchors in Concrete Elements (AC308).

TECHNICAL DATA

Property	Test Method	Result*
Consistency	ASTM C881	Passed, Non- sag
Heat deflection	ASTM D648	253°F (123°C)
Bond strength (moist cure, 60°F)	ASTM C882	3,227 psi (2 d) 3,560 psi (14 d)
Water absorption	ASTM D570	0.10% (24 hr)
Compressive yield strength (cured 60°F)	ASTM D695	10,930 psi (7 d)
Compressive modulus (cured 60°F)	ASTM D695	718,250 psi
Gel time	ASTM C881	5 min
Shrinkage coefficient	ASTM D2566	0.002 in./in.

^{*}Material and curing conditions: 73 ± 2°F, unless otherwise noted.

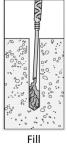
CURE SCHEDULE

	se Material mperature	Gel Time	Cure Time				
°F	°C	minutes	hrs				
14	-10	30	24				
32	0	15	8				
50	10	7	3				
68	20	4	1				
86	30	11/2	30 min.				
100	38	1	20 min.				

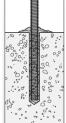
For water saturated concrete, the cure time must be doubled.

INSTALLATION PROCEDURE

HOLE PREPARATION

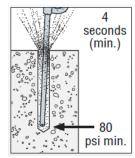

- Drill: Drill hole to specified diameter and depth.
- Blow: Remove dust from hole with oilfree compressed air for a minimum of

Technical Data Sheet (TDS)

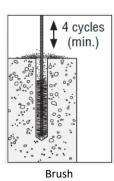


four seconds. Compressed air nozzle must reach the bottom of the hole.

- Brush: Clean with a nylon brush for a minimum of four cycles. Brush should provide resistance to insertion. If no resistance is felt, the brush is worn and must be replaced.
- Blow: Remove dust from hole with oil-free compressed air for a minimum of four seconds. Compressed air nozzle must reach the bottom of the hole.



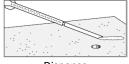
Do not disturb



Drill

Blow

seconds


(min.) 80 psi min.

Blow

Cartridge Preparation

- Insert: Insert cartridge into dispensing tool.
- Dispense: Dispense adhesive to the side until properly mixed (uniform color).

Insert

Dispense

FILLING THE HOLE

■ FOR SOLID BASE MATERIALS

Fill: Fill hole completely full, starting from bottom of hole to prevent water pockets. Withdraw nozzle as hole fills up.

Insert: Insert clean, oil-free anchor, turning slowly until the anchor contacts the bottom of the hole.

Do not disturb: Do not disturb anchor until fully cured.

IAA™HS Design Information

IAA™HS Installation Information and Additional Data for Threaded Rod and Rebar in Normal-Weight Concrete¹

Characteristic				Nominal Anchor Diameter da (in.) / Rebar Size							
		Symbol	Units	3/8 / #3	1/2 / #4	5/8 / #5	3/4 / #6	7/8 / #7	1/#8	11/4 / #10	
Installation					1	•					
Drill Bit Diameter for Threaded	Rod	d _{hole}	in.	7/16	9/16	11/16	13/16	1	11/8	13/8	
Drill Bit Diameter for Reba	Drill Bit Diameter for Rebar		in.	1/2	5/8	3/4	7/8	1	11/8	13/8	
Maximum Tightening Torque		T _{inst}	ftlb.	10	20	30	45	60	80	125	
	Minimum	h _{ef}	in.	23/8	23/4	31/8	31/2	33/4	4	5	
Permitted Embedment Depth Range ²	Maximum	h _{ef}	in.	71/2	10	121/2	15	171/2	20	25	
Minimum Concrete Thickness h _i		h _{min}	in.	h _{ef} + 5d _{hole}							
Critical Edge Distance 2 c_{ac}		Cac	in.	See foonote 2							
Minimum Edge Distance		C _{min}	in.		13/4						
Minimum Anchor Spacing		S _{min}	in.				3			6	

^{1.} The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.

 $[h/h_{\rm ef}] \le 2.4$

 $t_{K,uncr}$ = the characteristic bond strength in uncracked concrete, given in the tables that follow $\leq k_{uncr}$ ($(h_{ef} \times f'_{c})^{\omega}/(\pi \times d_{a})$)

h =the member thickness (inches)

 h_{ef} = the embedment depth (inches)

^{2.} $c_{ac} = h_{ef} (\tau_{k,uncr}/1,160)^{0.4} \times [3.1 - 0.7(h/h_{ef})], \text{ where:}$

IAA™HS Tension Strength Design Data for Threaded Rod in Normal-Weight Concrete¹

Characteristic		Symbol	Units	Nominal Anchor Diameter da (in.)									
	Characteristic				3/8	1/2	5/8	3/4	7/8	1	11/4		
		S	teel Strength	in Tensio	n								
	Minimum Tensile Stress Area		A _{se}	in. ²	0.078	0.142	0.226	0.334	0.462	0.606	0.969		
	Tension Resistance of Steel — ASTM F1554, Gr	ade 36			4,525	8,235	13,110	19,370	26,795	35,150	56,200		
	Tension Resistance of Steel — ASTM A193, Gra	de B7		,,	9,750	17,750	28,250	41,750	57,750	75,750	121,125		
Threaded Rod	Tension Resistance of Steel — Type 410 Stainle A193, Grade B6)	ess (ASTM	N _{sa}	lb.	8,580	15,620	24,860	36,740	50,820	66,660	106,590		
	Tension Resistance of Steel — Type 304 and 31 A193, Grade B8 and B8M)	L6 Stainless (ASTM			4,445	8,095	12,880	19,040	26,335	34,540	55,235		
	Strength Reduction Factor — Steel Failure		2	_				0.756					
	Concrete	Breakout Strength	in Tension (2	,500 psi ≤	f' _c ≤ 8,000	psi)							
Effectiveness I	actor — Uncracked Concrete		k _{uncr}	_				24					
Effectiveness F	actor — Cracked Concrete		k _{cr}	_	17								
Strength Redu	ction Factor — Breakout Failure		?	_	0.65 ⁸								
		Bond Strength in	Tension (2,5	500 psi ≤ f	' _c ≤ 8,000 p	si)							
	Characteristic Bond Strength		₽ _{k,uncr}	psi	1,390	1,590	1,715	1,770	1,750	1,655	1,250		
Uncracked Concrete 2,3,4	Permitted Embedment Depth Range	Minimum	h _{ef}	in.	2	23/4	31/8	31/2	33/4	4	5		
concrete		Maximum			71/2	10	121/2	15	171/2	20	25		
	Characteristic Bond Strength ^{9,10,11}	<u>.</u>	₽ _{k,cr}	psi	1,085	1,035	980	950	815	800	700		
Cracked Concrete 2,3,4		Minimum			3	3	31/8	31/2	33/4	4	5		
Concrete	Permitted Embedment Depth Range	Maximum	h _{ef}	in.	71/2	10	121/2	15	171/2	20	25		
	Bond Strength in Tension -	— Bond Strength R	eduction Fac	tors for Co	ontinuous S	pecial Inspe	ection						
Strength Redu	ction Factor — Dry Concrete		\mathbb{Z}_{dry}	_			0.657			0	.55 ⁷		
Strength Redu	ction Factor — Water-Saturated Concrete		2 _{sat}	_		0.457							
Additional Factor for Water-Saturated Concrete			2 _{sat}	_	0.	0.54 ⁵ 0.77 ⁵ 0.96 ⁵					.96 ⁵		
	Bond Strength in Tension	— Bond Strength	Reduction Fa	actors for	Periodic Sp	ecial Inspec	tion			•			
Strength Reduction Factor — Dry Concrete			\mathbb{Z}_{dry}	_	0.557 0.457					.45 ⁷			
Strength Redu	ction Factor — Water-Saturated Concrete		2 _{sat}	_				0.457		1			
Additional Fac	tor for Water-Saturated Concrete		2 _{sat}	_	0.	465		0.655		0	.815		

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.
- 2. Temperature Range: Maximum short-term temperature of 180°F. Maximum long-term temperature of 110°F.
- 3. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).
- 4. Long-term concrete temperatures are constant temperatures over a significant time period.
- 5. In water-saturated concrete, multiply $\mathbb{Z}_{k,uncr}$ and $\mathbb{Z}_{k,cr}$ by K_{sat} .
- 6. The value of Papplies when the load combinations of ACI 318-145.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of D.
- 7. The value of Papplies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of D.
- 8. The value of Papplies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318-11 D.4.3 (c) for Condition A are met, refer to ACI 318-11 D.4.4 to determine the appropriate value of D. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of D.
- 9. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 1/2", 5/8", 3/4" and 1" anchors must be multiplied by 🛚 N, Seis = 0.85.
- 10. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 11/4" anchors must be multiplied by αN,seis = 0.75.
- 11. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 7/8" anchors must be multiplied by αN,seis = 0.59.

IAA™HS Tension Strength Design Data for Rebar in Normal-Weight Concrete¹

			Symbol		Rebar Size								
				Units	#3	#4	#5	#6	#7	#8	#10		
			Steel Stre	ength in Ter	nsion								
	Minimum Tensile Stress Ar	ea	Ase	in.²	0.11	0.2	0.31	0.44	0.6	0.79	1.27		
Dohov	Tension Resistance of Steel (ASTM A615 Grade 60)	— Rebar	N	11-	9,900	18,000	27,900	39,600	54,000	71,100	114,300		
Rebar	Tension Resistance of Steel (ASTM A706 Grade 60)	— Rebar	- N _{sa}	lb.	8,800	16,000	24,800	35,200	48,000	63,200	101,600		
	Strength Reduction Factor	— Steel Failure	?	_				0.75^{6}					
	Con	ncrete Breakout Strer	ngth in Tensio	on (2,500 p	si ≤ f' _c ≤ 8,0	000 psi)							
Effectiveness Factor — Uncracked Concrete				_				24					
Effectiveness Factor — Cracked Concrete			k _{cr}		17								
Strength Reduction Factor –	— Breakout Failure		?	_	0.65 ⁸								
		Bond Streng	th in Tensior	(2,500 psi	≤ f' _c ≤ 8,00	00 psi)							
	Characteristic Bond	Strength	₽ _{k,uncr}	psi	1,010	990	970	955	935	915	875		
Uncracked Concrete 2,3,4	Permitted Embedment Depth Range	Minimum			23/8	23/4	31/8	31/2	3 3/4	4	5		
		Maximum	- h _{ef}	in.	71/2	10	121/2	15	171/2	20	25		
	Characteristic Bond	Strength	₽ _{k,cr}	psi	340	770	780	790	795	795	820		
Cracked Concrete 2,3,4	Permitted Embedment	Minimum	,		3	3	31/8	31/2	33/4	4	5		
	Depth Range	Maximum	- h _{ef}	in.	71/2	10	121/2	15	171/2	20	25		
	Bond Strength in Te	nsion — Bond Streng	th Reduction	n Factors fo	or Continuo	us Special In	spection			l			
Strength Reduction Factor –	— Dry Concrete		□ _{dry}	_			0.657			0.	55 ⁷		
Strength Reduction Factor –	– Water-Saturated Concrete		2 _{sat}	_				0.457		I.			
Additional Factor for Water-Saturated Concrete			2 sat	_	0.	54 ⁵		0.775		0.	96⁵		
	Bond Strength in 1	ension — Bond Strei	ngth Reducti	on Factors	for Periodi	c Special Ins _l	pection			1			
Strength Reduction Factor — Dry Concrete			2 _{dry}	_			0.557			0.	45 ⁷		
Strength Reduction Factor –	– Water-Saturated Concrete		2 _{sat}	_				0.457		1			
Additional Factor for Water-	Saturated Concrete		? sat	_	0.	465		0.655		0.	815		
				1	l		1			1			

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.
- 2. Temperature Range: Maximum short-term temperature of 180°F. Maximum long-term temperature of 110°F.
- 3. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).
- 4. Long-term concrete temperatures are constant temperatures over a significant time period.
- 5. In water-saturated concrete, multiply $\mathbb{Z}_{k,uncr}$ and $\mathbb{Z}_{k,cr}$ by $K_{sat.}$
- 6. The value of Papplies when the load combinations of ACI 318-145.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318

Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of 🗵

- 7. The value of 🕮 applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of 🗈
- 8. The value of Papplies when both the load combinations of ACI 318-145.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-1417.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318-11 D.4.3 (c) for Condition A are met, refer to ACI 318-11 D.4.4 to determine the appropriate value of Papple 1. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of Papple 2. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of Papple 3.

IAA™HS Shear Strength Design Data for Threaded Rod in Normal-Weight Concrete¹

Characteristic				Nominal Anchor Diameter (in.)							
	Characteristic	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	11/4	
		Steel Streng	gth in She	ear							
	Minimum Shear Stress Area	A _{se}	in. ²	0.078	0.142	0.226	0.334	0.462	0.606	0.969	
	Shear Resistance of Steel — ASTM F1554, Grade 36			2,260	4,940	7,865	11,625	16,080	21,090	33,720	
	Shear Resistance of Steel — ASTM A193, Grade B7			4,875	10,650	16,950	25,050	34,650	45,450	72,675	
	Shear Resistance of Steel — Type 410 Stainless (ASTM A193, Grade B6)	V _{sa}	lb.	4,290	9,370	14,910	22,040	30,490	40,000	63,955	
Threaded	Shear Resistance of Steel — Type 304 and 316				4,855	7,730	11,425	15,800	20,725	33,140	
Rod	Reduction for Seismic Shear — ASTM F1554, Grade 36			0.85							
	Reduction for Seismic Shear — ASTM A193, Grade B7	$\alpha_{v, sisi}^{5}$	_	0.85							
	Reduction for Seismic Shear — Type 410 Stainless (ASTM A193, Grade B6)			0.85	5 0.75					0.85	
	Reduction for Seismic Shear — Type 304 and 316 Stainless (ASTM A193, Grade B8 and B8M)			0.85			0.75			0.85	
	Strength Reduction Factor — Steel Failure	?	_	0.65 ²							
	Concre	te Breakout	Strength	in Shear							
Diameter of And	chor	da	in.	0.375	0.5	0.625	0.75	0.875	1	1.25	
Load-Bearing Le	ength of Anchor in Shear	\boldsymbol{e}_{e}	in.	h _{ef}							
Strength Reduc	Strength Reduction Factor — Breakout Failure		_		0.70 ³						
	Concr	ete Pryout S	trength i	n Shear							
Coefficient for I	Pryout Strength	k _{cp}	_	1.0 for $h_{ef} < 2.50$ "; 2.0 for $h_{ef} \ge 2.50$ "							
Strength Reduc	tion Factor — Pryout Failure	?	_				0.704				

^{2.} The value of Papplies when the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-19 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of Papplies when both the load combinations of ACI 318-19 145.3.

The value of Papplies when both the load combinations of ACI 318-14 5.3. The value of Papplies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations

of ACI 318 Section 9.2 are used and the requirements of ACI 318-11 D.4.3

⁽c) for Condition A are met, refer to ACI 318-11 D.4.4 to determine the appropriate value of 🛭 If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to

determine the appropriate value of ②.

The value of ② are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ②.

The values of V₅₀ are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V₅₀ must be multiplied by $\mathbb{P}_{V,seis}$ for the corresponding anchor steel type.

IAA™HS Shear Strength Design Data for Rebar in Normal-Weight Concrete¹

Characteristic				Rebar Size							
	Characteristic	Symbol	Units	#3	#4	#5	#6	#7	#8	#10	
		Steel St	rength in S	Shear							
	Minimum Shear Stress Area	A _{se}	in.²	0.11	0.2	0.31	0.44	0.6	0.79	1.27	
	Shear Resistance of Steel — Rebar (ASTM A615 Grade 60)	1/		4,950	10,800	16,740	23,760	32,400	42,660	68,580	
	Shear Resistance of Steel — Rebar (ASTM A706 Grade 60)	$ V_{sa}$	lb.	4,400	9,600	14,880	21,120	28,800	37,920	60,960	
Rebar	Reduction for Seismic Shear — Rebar (ASTM A615 Grade 60)				0.56		0.80				
	Reduction for Seismic Shear — Rebar (ASTM A706 Grade 60)		_	0.56			0.80				
	Strength Reduction Factor — Steel Failure	2		0.652							
	C	oncrete Breako	ut Streng	th in Shear							
Diameter of An	chor	da	in.	0.375	0.5	0.625	0.75	0.875	1	1.25	
Load-Bearing Lo	ength of Anchor in Shear	ℓ e	in.	h _{ef}							
Strength Reduc	Strength Reduction Factor — Breakout Failure		_	0.70 ³							
		Concrete Pryou	t Strength	in Shear							
Coefficient for	Coefficient for Pryout Strength		_		1.0 for h_{ef} < 2.50"; 2.0 for $h_{ef} \ge$ 2.50"						
Strength Reduc	tion Factor — Pryout Failure	2	_				0.70 ⁴				

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.
- 2. The value of 🕮 pplies when the load combinations of ACI 318-145.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI

- 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of 2.

 3. The value of 22 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318-11 D.4.3 (c) for Condition A are met, refer to ACI 318-11 D.4.4 to determine the appropriate value of 🗓 If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of 🗓
- The value of Papplies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of 🗵
- The values of V_{30} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{30} must be multiplied by $\mathbb{Z}_{V,seis}$ for the corresponding anchor steel type

CTech-LLC®

CYTEC's Composite Technology technical@ctech-llc.com info@ctech-llc.com www.CTech-LLC.com

Before using any CTech-LLC® product, the user must review the most recent version of the product's technical data sheet, material safety data sheet and other applicable documents, available at www.ctech-llc.com.

WARANTY:

CTech-LLC® warrants its products to be free from manufacturing defects. Buyer determines suitability of product for use and assumes all risks. Buyer's sole remedy shall be limited to replacement of product. Any claim for breach of this warranty must be brought within one month of the 'date of purchase. CTech-LLC® shall not be liable for any consequential or special damages of any kind, resulting from any claim or breach of warranty, breach of contract, negligence or any legal theory. The Buyer, by accepting the products described herein, agrees to be responsible for thoroughly testing any application to determine its suitability before utilizing.